Mitochonic Acid 5 (MA-5), a Derivative of the Plant Hormone Indole-3-Acetic Acid, Improves Survival of Fibroblasts from Patients with Mitochondrial Diseases.

نویسندگان

  • Takehiro Suzuki
  • Hiroaki Yamaguchi
  • Motoi Kikusato
  • Tetsuro Matsuhashi
  • Akihiro Matsuo
  • Takeya Sato
  • Yuki Oba
  • Shun Watanabe
  • Daichi Minaki
  • Daisuke Saigusa
  • Hiroko Shimbo
  • Nobuyoshi Mori
  • Eikan Mishima
  • Hisato Shima
  • Yasutoshi Akiyama
  • Yoichi Takeuchi
  • Akinori Yuri
  • Koichi Kikuchi
  • Takafumi Toyohara
  • Chitose Suzuki
  • Masahiro Kohzuki
  • Jun-ichi Anzai
  • Nariyasu Mano
  • Shigeo Kure
  • Teruyuki Yanagisawa
  • Yoshihisa Tomioka
  • Masaaki Toyomizu
  • Sadayoshi Ito
  • Hitoshi Osaka
  • Ken-ichiro Hayashi
  • Takaaki Abe
چکیده

Mitochondria are key organelles implicated in a variety of processes related to energy and free radical generation, the regulation of apoptosis, and various signaling pathways. Mitochondrial dysfunction increases cellular oxidative stress and depletes ATP in a variety of inherited mitochondrial diseases and also in many other metabolic and neurodegenerative diseases. Mitochondrial diseases are characterized by the dysfunction of the mitochondrial respiratory chain, caused by mutations in the genes encoded by either nuclear DNA or mitochondrial DNA. We have hypothesized that chemicals that increase the cellular ATP levels may ameliorate the mitochondrial dysfunction seen in mitochondrial diseases. To search for the potential drugs for mitochondrial diseases, we screened an in-house chemical library of indole-3-acetic-acid analogs by measuring the cellular ATP levels in Hep3B human hepatocellular carcinoma cells. We have thus identified mitochonic acid 5 (MA-5), 4-(2,4-difluorophenyl)-2-(1H-indol-3-yl)-4-oxobutanoic acid, as a potential drug for enhancing ATP production. MA-5 is a newly synthesized derivative of the plant hormone, indole-3-acetic acid. Importantly, MA-5 improved the survival of fibroblasts established from patients with mitochondrial diseases under the stress-induced condition, including Leigh syndrome, MELAS (myopathy encephalopathy lactic acidosis and stroke-like episodes), Leber's hereditary optic neuropathy, and Kearns-Sayre syndrome. The improved survival was associated with the increased cellular ATP levels. Moreover, MA-5 increased the survival of mitochondrial disease fibroblasts even under the inhibition of the oxidative phosphorylation or the electron transport chain. These data suggest that MA-5 could be a therapeutic drug for mitochondrial diseases that exerts its effect in a manner different from anti-oxidant therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochonic Acid 5 (MA-5) Facilitates ATP Synthase Oligomerization and Cell Survival in Various Mitochondrial Diseases

Mitochondrial dysfunction increases oxidative stress and depletes ATP in a variety of disorders. Several antioxidant therapies and drugs affecting mitochondrial biogenesis are undergoing investigation, although not all of them have demonstrated favorable effects in the clinic. We recently reported a therapeutic mitochondrial drug mitochonic acid MA-5 (Tohoku J. Exp. Med., 2015). MA-5 increased ...

متن کامل

Evaluation of callus induction and plant regeneration in Citrullus colocynthis (L.) Schrad. Sormeh Gharehmatrossian*

In the present study, small segments of cotyledon, apical bud, hypocotyl, and root of 10-day-old seedlings were isolated and transferred to Murashige and Skoog (MS) base medium with different treatments of phytohormones. Two media were used for apical bud culture: MS with indole-3-acetic acid (IAA) and kinetin (Kin) (1 mg/l) and the other medium, MS with double vitamin of MS and 6-benzylaminopu...

متن کامل

Indole-3-acetic acid catabolism in Zea mays seedlings. Metabolic conversion of oxindole-3-acetic acid to 7-hydroxy-2-oxindole-3-acetic acid 7'-O-beta-D-glucopyranoside.

A new metabolite of the plant growth substance indole-3-acetic acid has been extracted from Zea mays seedlings and characterized as the 7'-O-beta-D-glucopyranoside of 7-hydroxy-2-oxindole-3-acetic acid. This compound was the major product formed from [5-3H] 2-oxindole-3-acetic acid, incubated with intact plants or root and coleoptile sections. Identification was by gas chromatography-mass spect...

متن کامل

Bioproduction of Indole Acetic Acid by Rhizobium Strains Isolated from Root Nodules of Green Manure Crop, Sesbania sesban (L.) Merr.

Twenty six Rhizobium strains were isolated from root nodules of Sesbania sesban (L.) Merr. collected from different regions of Andhra Pradesh. All the 26 Rhizobium strains produced indole acetic acid (IAA), but maximum amount was produced by only five strains in yeast extract mannitol  (YEM) medium supplemented with L-tryptophan. The strains were found to elaborate maximum IAA when fed with 2.5...

متن کامل

Photoaffinity labeling of indole-3-acetic acid-binding proteins in maize.

The photoaffinity labeling agent 5-azidoindole-3-acetic acid, an analog of the endogenous plant hormone indole-3-acetic acid (an auxin), was used to identify indole-3-acetic acid-binding proteins in maize. Two peptides with subunit molecular masses of 24 and 22 kilodaltons are specifically labeled in a saturable manner. Both peptides are slightly acidic and behave as dimers under nondenaturing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Tohoku journal of experimental medicine

دوره 236 3  شماره 

صفحات  -

تاریخ انتشار 2015